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Noise reduction in Eden models: 11. Surface structure and 
intrinsic width 

JBnos Kertesz'f and Dietrich E Wolf 
Institute for Theoretical Physlcs, Unlbersity of Cologne, D-5000 Koln 41, Federal Republic 
of Germany 

Received 30 June  1987 

Abstract. We suggest a picture of the intrinsic surface width in Eden models and  show 
that it is a major source of corrections to  scaling of the surface roughness. Using the 
multiple-hit noise reduction method we can control the intrinsic width a n d  thereby improve 
the scaling behaviour systematically as  we demonstrate in detailed calculations on the 
square lattice. We calculate the number of excess perimeter sites as  a function of t ime a n d  
find that its asymptotic value decays with a power law as  a function of increasing hitting 
number.  Substrate effects and  anisotropy become more apparent  if noise reduction is 
applied.  

1. Introduction 

The structure and fluctuations of an  interface between two phases has been a long- 
standing unsolved problem of statistical mechanics (Smoluchowsky 1908, Rowlinson 
and Widom 1982). Concepts, such as the intrinsic surface width, are lacking a clear 
definition and have been subject to extensive discussions ( H u e  et a1 1985, Percus and  
Williams 1986). Simple interfacial growth models (Herrmann 1986, Kertesz 1987) are 
expected to contribute to the understanding of these problems. 

In addition, there are non-equilibrium growth phenomena which seem to be 
adequately treated by such models (Leamy er a1 1980). They are, however, interesting 
in their own right too, because of the complex behaviour of the developing surface. 
The intimate relation of these models to other problems of theoretical physics, such 
as shock wave propagation described by the Burgers equation or polymer statistics 
(Kardar er a /  1986, Stauffer and Jan 1987) on the one hand and spin models (Meakin 
et a1 1986b, Plischke er a/ 1987) on the other, has motivated further the activity in this 
field. 

The Eden model (Eden 1961) is a paradigm for stochastic growth of compact 
clusters exhibiting non-trivial scaling of the surface. Despite its simplicity (a cluster 
is grown on a lattice by incorporating its current perimeter sites randomly) it took 
considerable effort to understand its main features at least in two dimensions (Stauffer 
1987). Another related model is ballistic aggregation (Vold 1963) which probably 
belongs to the same universality class as the Eden process (cf Meakin et ul 1986b). 

Eden clusters are compact in all dimensions (Dhar  1985): the number of particles 
N in the cluster is proportional to R d  where R is the linear size of the cluster and d 

t Present and  permanent address:  Institute for Technical Physics, HAS, POB 76, Budapest,  H-1325, Hungary. 

0305-4470/88/030747 + 15S02.50 @ 1988 IOP Publishing Ltd 747 



748 J Kertksz and D E Wolf 

is the Euclidean dimension. The surface, however, is rough, i.e. the surface width w 
diverges with increasing system size. The dynamic scaling of this width is non-trivial 
(Plischke and Racz 1984) and  can be given for clusters grown on a substrate of size 
Ld- '  as (Family and Vicsek 1985) 

H' = L"f( t /  L')  

f ( x ) - + f =  for x+co (1) 

f( x)  = cxp p = a / z  for x+O 

where w 2  = (( r - ( r ) ) ' ) ,  r being the height of a perimeter site above the substrate and 
f = N / L d  is the time proportional to the cluster size. a and p are critical exponents, 
the averaging (. . .) is extended over all perimeter sites and  fz and  c are constants. 

Recent theoretical work (Kardar et a1 1986, Kardar and  Zhang 1987) based on a 
Langevin equation approach to surface evolution (Edwards and Wilkinson 1982) and  
the exact solution of a modified Eden model (Dhar 1987) suggest (Y = 5 and p = f in 
two dimensions. Numerical results (Jullien and Botet 1985, Plischke and  Racz 1985, 
Hirsch and  Wolf 1986, Zabolitzky and Stauffer 1986, Wolf and Kertksz 1987a) support 
this prediction. 

The situation in higher dimensions is less clear. Some assumptions on the polymer 
analogue of the problem suggest superuniversal (dimension-independent) exponents 
(Kardar et a1 1986, Kardar and Zhang 1987) while Edwards and Wiklinson (1982) 
and Meakin et a1 (1986b) predict a = 0 for d = 3, a value obtained for roughening in 
capillary wave theory (Jasnow 1985). However, simulation results for ballistic aggrega- 
tion (Meakin et a /  1986b) and  the Eden model (Wolf and Kertesz 1987b) contradict 
both conjectures and support a recently proposed scaling law between the exponents 
(Meakin er af 1986b, Kardar and Zhang 1987, Krug 1987): z = 2 - a. 

The numerical investigation of the scaling behaviour of the surface in Eden growth 
is hindered by anisotropy and  strong corrections to scaling. The difficulties due to 
anisotropy can be overcome if the cluster is grown on a flat substrate. The corrections 
are a more serious problem. The multiple-hit (noise reduction) method turned out to 
be a powerful tool in order to reach the asymptotics with relatively small computing 
effort (Wolf and Kertesz 1987a, hereafter referred to as I ) .  Using this method we 
calculated the exponents in three and four dimensions (Wolf and  Kertesz 1987b) and  
found c u = l / d  and z = 2 - a .  

Noise reduction not only improves the scaling behaviour but also gives a better 
insight into the nature of the corrections to scaling, the substrate effects and the 
influence of lattice anisotropy. The aim of this paper is to study the latter points by 
presenting further results on the two-dimensional model and to contribute to the 
understanding of the structure of surfaces. 

One of the basic concepts in the theory of surfaces is the intrinsic width (Rowlinson 
and Widom 1982). In  the case of the Eden model noise reduction enables us to separate 
the contributions to the total surface width originating from the intrinsic width and 
from long-wavelength fluctuations, respectively. Furthermore the asymptotic behaviour 
of these contributions can be described by a general scaling ansatz which incorporates 
the noise reduction. This will be elaborated in 5 2. 

Wolf (1987) pointed out the importance of perimeter density in the characterisation 
of the surface. We show in 8 3 how this quantity depends on noise reduction. Also, 
specific subsets of the perimeter will be discussed. 



Noise reduction in Eden models: I I  749 

Reducing the noise slows down the development of fluctuations. Therefore the 
coherence due  to the substrate is observable for longer than in the original model: the 
growth proceeds layerwise in the early stage and  consequently the anisotropy is stronger. 
We give an  account of these effects in § 4. 

In  5 5 we summarise and discuss our results. An appendix contains the calculation 
of the time dependence of the width and perimeter density in layerwise growth. 

2. The surface width 

2.1. The model 

We consider the two-dimensional Eden growth process on a flat substrate of size L 
with noise reduction as introduced in I .  The model is defined in the following way. 
At the beginning only the substrate sites are occupied. In the usual Eden model one 
of the perimeter sites (empty sites which are nearest neighbours to at  least one occupied 
site) is chosen at random and is added to the cluster. Instead of doing so we count 
the number of trials for a given growth site and  occupy it only if this number reaches 
a prescribed value m called the noise reduction parameter or hitting number. The 
m = 1 case is obviously the original Eden model. Figure 1 presents a couple of snapshots 
of noise-reduced Eden clusters. 

The above procedure represents model A in the terminology of Jullien and Botet 
(1985); we also carried out calculations with model C where first an  occupied site on 
the boundary (already belonging to the cluster) is picked randomly and  then one of 
its empty neighbour sites is filled by chance. In  this case we count the trials on the 
boundary sites. 

In order to study the effect of anisotropy we consider geometries where the growth 
proceeds in the (1,O) and  ( 1 , l )  directions. Perpendicular to the growth we implemented 
periodic (or more precisely helical) boundary conditions. The time is identified with 
N /  L where N is the total number of sites in the cluster grown on  the substrate. Most 
of our data presented here are for model A and growth direction (1,O) and we shall 
always emphasise it if we deal with a different situation. The number of independent 
runs times the number of particles in the cluster was typically between 108-10’. The 
computations were carried out on a Cyber 76. 

2.2. Intrinsic surface width and corrections to scaling 

The considerable improvement in the scaling behaviour of the Eden model due to 
noise reduction ( I )  can be traced back to the structure of the surface. There are two 
contributions to the width of the surface (Zabolitzky and Stauffer 1986): the long- 
wavelength fluctuations which are responsible for the scaling described by (1) and  the 
superimposed L-independent intrinsic width. In I we argued that the intrinsic width 
characterising the internal structure of the surface is due to holes, overhangs and high 
steps. Since noise reduction suppresses the formation of these deviations from single- 
step SOS (solid-on-solid, see, e.g., Huse er a1 (1985)) configurations the corrections to 
scaling caused by the intrinsic width are decreasing, whereas the long-wavelength 
fluctuations are still present. 

One would like to construct an ansatz which expresses these assumptions in a 
mathematical form based upon the above considerations. For the description of the 
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Figure 1. ( a )  Snapshots of noise-reduced Eden clusters grown on a substrate of L =  160, 
each containing 25 000 particles, for different values of the hitting parameter m. We cut 
the lower parts where no holes were present any longer. ( h )  Time evolution of a cluster 
growing at first with m = 1. At N , , =  10' noise reduction with ni = 16 is switched on. The 
surface configuration is shown for N = N, , t6250 i ,  i = 0 , .  , . , 16. This picture illustrates 
lateral growth, decay of short-wavelength fluctuations present at N = N,,  and  precursors 
of singularities ('shock waves') as described by Kardar  et ai (1986). ( L  = 625.)  

contribution of the intrinsic width w, we suggest the following equation: 

where a and w, are independent of L. The coefficient a for the amplitude is normalised 
to approach unity as m + W .  w, is the intrinsic width of the surface region. Both a 
and w, are expected to reach stationary values after an L-independent saturation time. 
Thus for large L and t they can be regarded as constants. The quadratic summation 
in ( 2 )  arises naturally if w is regarded as the width of the convolution of two independent 
Gaussian distributions, one describing the intrinsic width and the other the long- 
wavelength fluctuations., However, we consider ( 2 )  as an ansatz to be tested by our 
data. Obviously, w, is a source of corrections to scaling. 

Figure 2 illustrates how well ansatz ( 2 )  fits the data in the limit of t lL'  +CO. (Here 
we made use of the result that in two dimensions a = (Kardar et ul 1986, Zabolitzky 
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Figure 2. Plot of w 2 / L  against 1 / L  for m = 1 (0,0), 2 (m) and 4 (A). According to (2 )  
the slopes can be identified with the intrinsic width w:. The intersections with the vertical 
axis are the amplitudes of the long-wavelength fluctuations. Data for m = 1 are taken from 
Wolf (1987) ( L  c 240) and Zabolitzky and Stauffer (1986) ( L  > 240). 

and Stauffer 1986).) A similar plot using the linear superposition ( w  = aLL”f+ w, )  has 
a worse fit to the same data. 

The slopes of the straight lines in figure 2 are the different values obtained for wf  
for m = 1, 2 and 4. The intrinsic width is indeed suppressed by increasing m :  the 
slopes are decreasing. The slopes for higher values of m are smaller than our error 
bars; from the three values available 

w, = 2.31 m (3) 

seems to hold approximately. 
The intercepts of the lines with the vertical axis correspond to the amplitudes of 

the long-wavelength fluctuations for various m values. Figure 3 shows that we can fit 
the m dependence of these intercepts quite well by 

U *  = (1 +2.3/ m )  f $  = 0.052. (4) 

(It is worth mentioning that, for the amplitude analogous to f $ ,  the value 0.07 can be 
obtained from data by Meakin et a1 (1986b) in a related single-step growth model.) 
Combining (2)-(4) for t +CO we get the following expression: 

w’( t + 00, L, m )  = 0.052( 1 + 2.3/ m ) L +  (2.3/ m)’ ( 5 )  

which leads, for rn = 1 and large L, to w=O.414LL’*(1+ 15/L) while Zabolitzky and 
Stauffer (1986) obtained from their large-scale calculation w ~ 0 . 4 2 L ” ~ (  1 + 18/L) 
purely empirically. 
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In our interpretation both the intrinsic width and the term a - 1 originate from 
holes, overhangs and steps higher than unity. Among these contributions the high 
steps are most important because holes and overhangs are built up  in processes of 
higher order in noise in the sense that a high step is already needed for forming an 
overhang and a hole is an overhang closing at least two higher steps. In 8 4 i t  will be 
shown that the number of perimeter sites in steps higher than unity vanishes as l / m .  
Therefore it seems plausible that a - 1 and U', are also proportional to l / m .  

2.3. Noise reduction and dynamic scaling 

So far we have considered the t + l x :  limit where the width saturates for a given L. 
However, noise reduction not only influences this asymptotic; it has very important 
effects on dynamic properties as well. Two observations can be made from a log-log 
plot of the width against time for various values of m (figure 4). For sufficiently large 
m one can recognise fairly linear parts at intermediate times between a short-time 
regime dominated by the substrate and the long-time stationary regime. The second 

1 Im 

Figure 3. The efect of noise reduction on the amplitude of the long-wavelength fluctuations 
shokn on a w'/L against l / m  plot. Filled symbols correspond to an extrapolation to 
L-+m (cf  figure 2 ) ;  x ,  L=240; the slope is 2.3*0.1 

observation is that noise reduction introduces a new timescale: the curves are shifted 
towards larger cluster sizes for increasing m. Including the m dependence into the 
general scaling ansatz (2) one has to write 

with a ( m )  and w , ( m )  for model A and growth direction ( 1 , O )  given by (3)  and (4), 
respectively. 
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Figure 4. Noise reduction introducing time rescaling. ( a )  Model A with L =240, for a 
sequence of m = 2‘ ,  i = 0 , 2 , ,  . . , 6 ,  m increasing from the left to the right. Straight parts 
on this log w against log I plot mark the dynamical scaling region. The insert shows the 
determination of the exponent 6 (see ( 7 ) )  by using the data for w = 1.2,  L = 240 ( x ) and 
L = 960 (01. A similar plot for model C is presented in ( b )  with L = 240 and i = 0, . . . ,4 .  
Here the insert is also based on data at w = 1.2. 
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The exponent 6 is determined from a log-log plot of t against m at a fixed w in 
the limit of large m where one can set a = 1 and wi = 0 (see the inserts in figure 4). 
The slope 6 is independent of L and w if chosen from the dynamical scaling region. 
For model A we get 6 =  1.05iO.l .  In figure 4(b)  we present data for model C from 
which we obtain 6 = 1.1 i O . l  (5 is possibly universal for models A and C). We see 
that, with noise reduction, the approach to the scaling region in models A and C is 
not as different as for m = 1 (Jullien and Botet 1985, Meakin et al 1986a). 

For small m the intrinsic width leads to strong corrections to scaling in the dynamical 
scaling region where we get, by combining (1) with (6), 

w2(t, m )  = ~ ’ [ a ( m ) ( t / m ~ ) ~ ] ~ + w f ( m ) .  ( 7 )  

Figure 5 shows the evaluation of our data according to ( 7 ) .  In  the region where the 
scaling (6) is valid we get a straight line in the w 2 -  wf(m) against [ ~ ( m ) ( t / m ~ ) ~ ] ’  
plot where a 2 ( m )  is taken from (4) .  The slope determines c 2  = 0.52. 

The ansatz ( 7 )  leads to the effective exponent pefl = d(ln w)/d(ln t) 

or, for large t ,  using the numerical values obtained for model A with growth direction 
(1,O): 

PeH= :U1 -{2.3m-’’3[(1 +2.3/m)O.52r’”]-’}’/2B (9) 

for the t and m dependence of Pea where the value p = f is used (Kardar et a1 1986, 

I 
I 1 I I I 

Figures. Determinationofthecoefficient r ‘ f romthe Y =  M*’- $against  X = [ a ( i , , / m ) ‘ ” ] ’  
plot (cf (71 ) .  The values of w’ are  taken for L = 240, I,, = 256 ( x ) and  L = 960, f , ,  = 950 
I + 1. From the slope we obtain c’=0.518. 
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Zabolitzky and Stauffer 1986, I ) .  For m = 1 we can compare our result (9 )  with the 
data from Zabolitzky and  Stauffer (1986). Equation (9) explains why for large cluster 
sizes Petr approaches P = from below. Together with the substrate-induced value of 
Pee = 0.5 at small times this implies the occurrence of a minimum in Petr( t ) .  

We can also see from (8) that the correction to p in Pea due  to the intrinsic width 
is vanishing as m””-”. This explains our observation in I that noise reduction improves 
dynamical scaling behaviour. We obtained similar behaviour for dimensions higher 
than two (Wolf and Kertisz 1987b). 

3. Perimeter density 

The number of perimeter sites N ,  per unit length is an important characteristic of the 
surface which we denote by U = N , / L .  We have investigated how it is influenced by 
noise reduction. Here we only discuss our  results for model A and  growth direction 
(1 ,0) ,  where its behaviour is particularly transparent. Some remarks concerning the 
dependence on the growth direction and differences between models A and C will be 
made in the next section. 

Similar to the intrinsic width, the perimeter is also related to the high steps, holes 
and overhangs. For surface configurations without these features N ,  = L. Con- 
sequently, the excess perimeter density v - 1 is expected to approach zero for increasing 
hitting number m. 

As for m = 1 (Hirsch and  Wolf 1986) the perimeter density is independent of the 
substrate length L (figure 6 ) .  Therefore, for large L it reaches a stationary value much 
earlier than the width (Wolf 1987). Again we find that noise reduction shifts the 
stationary regime towards later times (cf the function f in (6)). However, a simple 

i + + + + + + + + +  
+ 1.0 1 

X X X X X x X X X X X X X X  I + x  

L I 1 I I , 
5 50 500 5000 

t 

Figure 6.  Time dependence of excess perimeter density c - 1 for L = 120 ( + 1, 240 ( x 1, 
960 (0). m varies from the top curve to the bottom curve as 2 ’ ,  I = 0,  1 , .  . . , 6 .  
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Figure 7. Excess perimeter for growth dlrection 0 = ~ / 4  ( c  - 1 2 )  (V) and for 0 = 0 
( L' - 1 )  (A), a n d  density of perimeter sites in overhangs ( N o /  L )  for 0 = 0 (0 )  as functions 
of m on  a log-log plot. 

quantitative analysis similar to (6) is not possible here because of the substrate effects, 
to be discussed in the next section. 

Figure 7 shows a log-log plot of the asymptotic value of c - 1 against m. For m 
between 8 and  64 we find that the excess perimeter density decays as 

confirming that noise reduction suppresses the extra perimeters contained in overhangs, 
holes and high steps. 

The different contributions to the excess perimeters are expected to be selectively 
sensitive to the noise reduction. To illustrate this we determined the density of 
overhangs No/ L. Figure 7 shows that No( m )  decreases with an exponent roughly twice 
as large as that for the total excess perimeter. The reason is that overhangs can only 
be created at high steps. Thus they are more strongly suppressed than the high steps. 
The creation of holes is a process of even higher order as it requires the closing of 
overhangs but in the statistics this may be compensated by lifetime effects. 

4. Substrate effects and anisotropy 

In  the limit m + CC the Eden cluster (model A)  grows layer by layer. A new generation 
of perimeter sites becomes active only after all sites of the preceding generation have 
been occupied. This is also true for model C for 8 = 0 ( 8  is the angle between the 
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orientation of the growth and the direction with Miller indices ( 1 ,  O) ,  O s  8 s 7r/4). 
However, for 8 > 0  there exist occupied sites with more than one empty neighbour 
which are selected by chance, so that there is somewhat more room for randomness 
in model C. 

As a consequence of the layerwise growth ( m  + 00) in model A the surface width 
for all 6 and the perimeter density for 0 > O  have oscillatory behaviour. I f  T is the 
fraction of sites occupied in one layer, the following expressions can be obtained: 

U ( T ,  f ? = 0 ) = 1  ( 1 l a )  

W( T, e = 0 )  = [ .( 1 - T ) ] ' "  ( 1 l b )  

W ( T ,  8 = ~ / 4 )  = [ T (  1 - T)] ' " / J2  ( 1 l d )  

with T = (1  - T ) / [  1 + T (  1 - T ) ] .  The derivation of (1  1) is given in the appendix. 
If m is finite, random fluctuations will lead to phase incoherence of these oscillations 

in different clusters of equal size and in the average over many clusters they will be 
washed out. However, for not too large times, one can still observe them. Figure 8 
shows the width for 6 = 0 as a function of the scaled time t / m E  for different m. We 
used 5 = 1. The upper curve corresponds to half-integer t (i.e. T = f )  where, according 

2 .0  

1 .o  

W 0.5 

0.25  

Figure 8. Oscillations of the surface width during the early stage of the growth on a 
substrate of length L = 960. Upper  values, half-integer times; lower values, integer times. 
Time is scaled with noise reduction parameter m = 32 (V), 64 (A), I28 (0 1, 256 ( x 1, 512 
+ I .  
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to (1 1 b ) ,  the width is maximal. The lower curve represents the values for integer t .  
The width oscillates between the two curves as a function of t .  

Some further interesting features of these substrate effects should be emphasised: 
they are independent of the size of the substrate and  survive for longer the larger m 
is. In  other words, increasing m increases the dynamical correlations in the system as 
the information about a configuration is maintained in layerwise growth. 

For the excess perimeter U - 1 in the 6 = 0 direction we have also observed oscillatory 
behaviour for hitting numbers m > 16. It extends to the stationary region, where our 
resolution of data becomes insufficient. 

These oscillations are surprising in view of ( l l a )  but can be explained in the 
following way. Due to the finiteness of m the surface develops a certain number of 
regions tilted with respect to the 6 = 0  orientation. If m is large enough to ensure 
almost layerwise growth, these tilted regions produce oscillations in U analogous to 
( l l c ) .  

Using large noise reduction, the oscillations of the perimeter density in the 8 = a/4 
direction are described for short times by (1 IC) .  For long times the perimeter density 
saturates. However, for m > 64 we observe saturation values below 7/642, the average 
over one period (the uppermost curve in figure 7) .  This is a subtle effect due to dynamic 
correlations built up  for large m: if a perimeter is occupied in the case of diagonal 
growth, two new perimeters are born next to it. Therefore the assumption of indepen- 
dent random occupation leading to (1  1) will not be valid and  clustering within a layer 
occurs which suppresses U .  

Figure 7 also shows that the excess perimeter density decays more slowly for 8 = a/4 
than for 6 = 0 (10). From the data between m = 16 and m = 64 we obtain v - 1 /42  ;= 

m-o.58*n 07. 

In Dhar (1986) and  Wolf (1987) it was shown that, for m = 1, t i  has the meaning 
of a growth velocity. Its dependence on the orientation 0 in the substrate geometry 
determines the shape of Eden clusters grown from a single seed. This raises the question 
whether the oscillations in (1 1 c )  have any influence on the shape of the Eden cluster 
in the limit m -+a. The answer is ‘no’. By similar arguments to Wolf (1987) one can 
see that for m > 1 the growth velocity is the number of ‘ripe’ perimeter sites where the 
counter is at a value m - 1. I n  the diagonal directional for layerwise growth there are 
never more than 1/v’2 ripe perimeter sites and therefore the cluster will be diamond- 
shaped. 

5. Discussion and summary 

In this paper we have given a detailed study of the square lattice noise-reduced Eden 
models A and C. The method of noise reduction was originally introduced for the 
case of Laplacian growth by Tang (1985) and SzCp er a1 (1985) and was successfully 
used to study the asymptotic shape of the clusters (Kertisz and Vicsek 1986, Nittmann 
and Stanley 1986). In I we demonstrated that the application of the multiple-hit noise 
reduction algorithm saves computer time and  memory in the investigation of the Eden 
model since it increases the region where dynamic scaling can be observed. The Eden 
model in three and four dimensions exhibits similar behaviour (Wolf and KertCsz 
1987b). 

According to our picture the improvement in the scaling behaviour is due  to the 
suppression of the intrinsic width by noise reduction. This is expressed in equation 
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(6) where the effect of noise on the amplitude of the scaling function f and on the 
timescale can also be seen. Due to noise reduction one can distinguish two characteris- 
tic times, me and L'me. Accordingly r<< me is the regime of strong substrate effects 
as displayed in figure 8, mt << r << Lzmt is the dynamical scaling region illustrated in 
figure 4 and finally t >> Lzmt is the stationary regime where the surface width reaches 
its asymptotic value. For r<< L'm5 the width of the surface region does not depend 
on L. 

Our data displayed in figures 2-5 support assumption (6) and  in the text we 
presented the numerical values for the coefficients (3) and (4) and the exponent 6. 
Figures 4 and 5 demonstrate that introducing noise reduction improves the dynamic 
scaling considerably (see also results in I )  and that important corrections to scaling 
stem from the intrinsic width. Of course, size-dependent corrections should also be 
taken into account (Zabolitzky and Stauffer 1986). According to I they show up  in 
systematic trends. 

We think that the scaling form (6) and  its numerical verification is the main result 
of the present paper. The ansatz given there might well work for other systems such 
as percolation (Franke 1980) or  thermal models as well. Since the intrinsic structure 
of the surface is attracting increasing interest from the point of view of theoretical 
(Huse et a1 1985) and experimental (Beaglehole 1987) considerations and  also of 
morphology (Chowdhury 1988) we think that an  analysis analogous to the present one 
for a Hamiltonian system would be useful. In this case we expect the temperature to 
play the role of l / m .  

The limit m +CO is subtle in the sense that, for m = 00, there is no  roughening at 
all since noise is necessary for developing the long-wavelength fluctuations. This 
suggests that-in a renormalisation group terminology-l/ m is a relevant parameter, 
i.e. we get the same exponents cy and z for every value of m, except for m = 00. 

We have seen that noise reduction introduces a time rescaling by shifting the curves 
towards larger sizes both for the width and for the perimeter density. Therefore, in 
order to take advantage of our method, one has to choose an  optimal value for m :  
large enough for reducing the intrinsic width but still small enough to reach the scaling 
region within a reasonable computing time. In Wolf and Kertisz (1987b) we used 
m = 8 for d = 3 and 4. 

Noise reduction turned out to reduce the excess perimeter in the same way as the 
intrinsic width. In fact, since both quantities receive the main contributions from steps 
higher than unity, the excess perimeter density seems to be a good measure of the 
intrinsic width. The nearly identical 1/ m dependence of these quantities points in this 
direction (see (3) and (10)).  We think that this concept is worth testing in other 
systems, too. 

In conclusion, we have shown that the application of noise reduction is very useful 
not only because it improves the scaling behaviour of the surface width but also because 
it helps in clarifying basic concepts for the understanding of the structure of surfaces. 
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Appendix 

We give here the derivation of ( 1  1 c, d ) .  Let T denote the filling of the first monolayer 
on a substrate parallel to the diagonal of a square lattice. The minimal number of 
perimeter sites is equal to the number of adsorption sites of the substrate: 

x = L / J 2 .  ( A I )  

For m + '0, supposing that there are no correlations among the particles (i.e. for t << m') ,  
the probability that an  empty site is the left neighbour of an  occupied one is ~ ( 1 -  7) .  

Whenever this is the case there is one perimeter site in addition to X ,  so that the total 
average number is 

N,= X [ 1 +  T( 1 - 7)]. ('42 

With ( A l )  one obtains the number of perimeter sites per unit length ( l l c ) .  
The average distance of the perimeter sites from the substrate is 

( r )  = X[(I  - T )  + 2 ~ + 2 7 ( 1 -  T)]/ N , J ~  (A3 

and similarly 

(r')  = x[( 1 - T )  +47+4T( 1 - T ) ] / N , ~ .  (A41 

Hence w7 = ( r 2 )  - ( r ) 2  = T (  1 - T ) / 2  with T given below (1  1 d). The derivation of (1 1 a) 
and (1 1 b )  is simpler and  follows similar lines. 
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